Шаговые синхронные двигатели. Принцип
действия и основные характеристики
Шаговые двигатели (ШД) служат для преобразования импульсного или кодового сигнала в угловое перемещение. В последнее время в связи с развитием компьютерной техники и технологии их область применения постоянно расширяется.
Шаговые двигатели являются синхронными электрическим машинами, у которых обмотки статора питаются от источника постоянного тока. Как и обычные двигатели они бывают активными (с возбужденным ротором) и реактивными. Активный ротор позволяет получить больший вращающий момент и обеспечить фиксацию положения при обесточенных обмотках статора.
На статоре ШД располагаются несколько обмоток, подключаемых в определенной последовательности к источнику постоянного тока с помощью электронного коммутатора. На рис. 1 схематически изображен шаговый реактивный двигатель с тремя обмотками на статоре. На временной диаграмме показаны токи в обмотках. На первом участке ток подается в обмотку 1. Она формирует неподвижное магнитное поле, ось полюсов которого совпадает с геометрической осью обмотки. Ротор разворачивается и ориентируется по оси магнитного поля. Затем к источнику питания подключается обмотка 2. Обе обмотки создают магнитное поле с осью полюсов, проходящей между осями обмоток и ротор поворачивается на . На следующем интервале обмотка 1 отключается и остается включенной обмотка 2. При этом ротор поворачивается еще на , ориентируясь вдоль ее оси. Далее подключается обмотка 3 и алгоритм циклически повторяется, вызывая дискретное перемещение ротора. Коммутацию обмоток в любой момент можно остановить и ротор останется в положении, соответствующем состоянию включенных обмоток.
Угловое смещение ротора при каждой коммутации называется шагом.
В каждом статическом состоянии между коммутациями ШД работает как обычный синхронный двигатель и имеет угловую характеристику (УХ), соответствующую его типу (активный или реактивный). На рис. 2 а) показаны УХ, соответствующие трём соседним шагам двигателя. Начало координат совмещено с УХ mpqn, соответствующей протеканию тока в некоторой произвольно выбранной обмотке (или комбинации обмоток). Включение обмотки, соответствующей требуемому смещению ротора на один шаг вперёд (+) или назад (–), эквивалентно скачкообразному смещению УХ в положительном или отрицательном направлении или, что то же самое, скачкообразному увеличению или уменьшению угла нагрузки q на величину шага. При этом скачкообразно изменяется и вращающий момент, развиваемый ШД. Однако для движения в положительном направлении вращающий момент после коммутации обмоток M(0+) должен быть больше момента до коммутации M(0–), а для движении в отрицательном направлении – меньше, т.е. M(0+)<M(0–). Участки послекоммутационных УХ, соответствующие эти условиям, выделены на рис. 2 а) толстыми линями. Из рисунка следует, что для обеспечения движения в обоих направлениях рабочая точка должна находиться на участке pq исходной УХ, ограниченном точками ее пересечения с послекоммутационными УХ, т.е. угол нагрузки q должен находиться в пределах . Это эквивалентно условию
(1)
где: Mн – нагрузочный момент на валу ШД; Mmax – максимальный момент, развиваемый ШД; a – шаг двигателя в электрических угловых единицах измерения, связанный с пространственным шагом ротора отношением ; zp – число пар полюсов ШД.
На рис. 2 б) показаны варианты отработки шага в положительном и отрицательном направлениях при выполнении условия (1). Статический режим в исходном положении соответствует точке a. При отработке положительного шага в момент коммутации происходит переход в точку b+, а затем, по мере поворота ротора, в точку c+, соответствующую новому статическому состоянию. Шаг в отрицательном направлении из точки a происходит после коммутационного скачка в точку b– и последующего перемещения в точку c–. В случае нарушения условия (1), например, при отработке шага в положительном направлении, исходная рабочая точка a располагается выше точки q (рис. 2 в). При коммутации происходит переход в точку b+ с меньшим, чем у нагрузки вращающим моментом. Поэтому, в соответствии с уравнением движения (), ротор ШД начнёт вращаться с отрицательным ускорением e пока не достигнет точки равновесия с’, смещенной по отношению к точке на угол 2p–a. В случае ротор после коммутации окажется в положении неустойчивого равновесия в точке q и может случайным образом переместиться на один шаг в положительном направлении или на угол 2p–a в отрицательном. Таким образом, нарушение условия (1) приводит к полной потере работоспособности ШД.
Из выражения (1) следует, что располагаемый вращающий момент ШД всегда меньше максимально возможного и стремится к нему при . На рис. 2 г) показана зависимость располагаемого момента от числа шагов n на периоде коммутации. Работа ШД с числом шагов менее трёх вообще невозможна. При трёх шагах на периоде момент вдвое меньше максимального, а при десяти отличается от него менее чем на 10%.
Коммутацию обмоток ШД можно производить в разных режимах. Различают следующие режимы работы двигателей.
Статический режим, когда в обмотках статора протекает постоянный ток и магнитное поле неподвижно. Ротор находится в фиксированном положении и может только отклоняться от него на угол нагрузки q .
Квазистатический режим - режим когда коммутация обмоток совершается непрерывно, но между моментами переключения электромагнитные и механические переходные процессы полностью заканчиваются и скорость ротора в начале каждого шага равна нулю. Этот режим по существу является последовательностью статических режимов.
Установившийся режим работы, это режим при постоянной частоте коммутации обмоток. Ротор двигателя в этом режиме имеет постоянную среднюю скорость вращения, но совершает периодические и непериодические угловые колебания. Мерой длительности переходных процессов в ШД является период или частота собственных колебаний ротора , т.е. частота свободных угловых колебаний, которые будет совершать ротор, возвращаясь в состояние равновесия под действие магнитного поля статора. На практике частоту коммутации выбирают из условия . Наименьшую динамическую ошибку обеспечивает режим работы при двойной частоте коммутации . Эту частоту можно считать оптимальной для слабонагруженных приводов.
Помимо частоты собственных колебаний, для работы двигателей большое значение имеет электромагнитная постоянная времени обмоток статора , где - постоянная составляющая индуктивности обмотки статора, - полное активное сопротивление цепи обмотки. Электромагнитные процессы в двигателе можно не учитывать, если
Кроме указанных режимов работы существуют переходные режимы - пуск, ускорение, замедление, реверс. В этих режимах также недопустима потеря шагов.
Пуск ШД обычно осуществляется из фиксированного неподвижного состояния путем скачкообразного увеличения частоты коммутации. Пусковые свойства двигателей характеризуются частотой приёмистости, т.е. максимальной частотой коммутации, при которой возможен пуск без выпадения из синхронизма (без потери шагов). Частота приёмистости возрастает с увеличением максимального момента, уменьшением шага, снижением постоянной времени обмоток, величины нагрузки и момента инерции, приведённого к валу ротора.
Торможение ротора осуществляется скачкообразным прекращением коммутации. Предельная частота торможения, при которой ротор останавливается без потери шагов, как правило, выше частоты приёмистости.
Реверс осуществляется
скачкообразным изменением алгоритма коммутации. Предельная частота реверса
всегда меньше частоты приёмистости.
Основными характеристиками, определяющими свойства ШД как электромеханического преобразователя, являются рабочие динамические характеристики. К ним относятся предельная механическая характеристика и зависимость частоты приёмистости от момента нагрузки. Предельная механическая характеристика – это зависимость тактовой частоты коммутации или, что то же самое, средней скорости вращения ротора, от момента нагрузки на валу, при котором ротор ШД выпадает из синхронизма. Под частотой приемистости понимают максимальную частоту тактовых импульсов, при которой возможен пуск ШД из неподвижного состояния без потери шага. Различие этих двух характеристик заключается в том, что первая из них соответствует выходу из синхронизма в режиме вращения ротора, а вторая – при пуске. Поэтому отличие характеристик чисто количественное. На рис. 3 сплошными линиями показан ряд механических характеристик ШД. Они имеют вид горизонтальных отрезков. У синхронных двигателей с круговым вращающимся полем эти отрезки ограничены максимальным синхронизирующим моментом , а у ШД в квазистатическом режиме они ограничены моментом нагрузки в соответствии с выражением (1) или пусковым моментом .
В установившемся режиме с частотами коммутации выше предельной частоты квазистатического режима выход из синхронизма наступает при меньших моментах нагрузки вплоть до нулевого при частоте коммутации , когда работа ШД становится вообще невозможной (линия 1 рис. 3). Однако на практике предельная частота коммутации может быть существенно выше вследствие влияния явления механического резонанса. При этом максимальный момент нагрузки на некоторых частотах может превышать значение, соответствующее статическому режиму. В целом предельная механическая характеристика с учетом резонансных явлений имеет вид кривой 2 на рис. 3.
Шаговые двигатели находят широкое применение в маломощном приводе систем автоматического управления станков, роботов и манипуляторов, в телемеханике и вычислительной технике.