Гистерезисные синхронные двигатели. Принцип действия и основные характеристики

Гистерезисный двигатель отличается от других типов машин с круговым вращающимся магнитным полем конструкцией ротора (рис. 1 (а)). Он представляет собой полый цилиндр или пакет, собранный из колец магнитотвердого материала (1), насаженный на цилиндрическую втулку (2) из магнитного или немагнитного материала, закрепленную на валу ротора (3).

Пакет колец ротора называется активным слоем, и происходящие в этом слое процессы определяют свойства гистерезисного двигателя. Материал для активного слоя выбирают с петлей гистерезиса близкой к прямоугольной форме. На рис. 1(б) сплошной линией показана такая петля и для сравнения штриховой линией дана петля обычной электротехнической стали.

Принципиальным отличием гистерезисного двигателя от синхронного двигателя с постоянными магнитами заключается в том, что активный слой ротора намагничивается магнитным полем статора при пуске, поэтому в дальнейшем он может перемагничиваться этим же полем. Однако его намагниченность меньше намагниченности постоянных магнитов, поэтому он работает в режиме недовозбуждения.

Принцип работы гистерезисного двигателя поясняет рисунок 2. В синхронном режиме, т.е. когда ротор вращается со скоростью магнитного поля, материал ротора намагничен и машина работает как синхронный двигатель с постоянными магнитами. При отсутствии нагрузки на валу (рис. 2 (а)) поля ротора и статора взаимодействуют с силой F, направленной под разноименными полюсами встречно и в сумме равной нулю. Возникновение тормозного момента на валу приведет к расхождению осей магнитных полей на угол и появлению электромагнитного момента, компенсирующего момент нагрузки (рис. 2 б)). Такая картина процессов в двигателе полностью идентична работе двигателя с постоянными магнитами на роторе. Однако при дальнейшем увеличении нагрузки на валу угол увеличится до угла магнитного запаздывания (рис. 2 в)). Материал ротора начнет перемагничиваться и ось его магнитного поля будет смещаться вслед за полем статора, сохраняя при этом постоянное значение угла нагрузки и, следовательно, постоянное значение электромагнитного момента. Вал ротора в этом режиме может вращаться с любой скоростью меньше синхронной, т.е. двигатель будет работать в асинхронном режиме.

Наглядно представить такой процесс можно с помощью механической модели показанной на рисунке 3. Здесь поля статора и ротора представлены постоянными магнитами. Магнит ротора лежит на диске и удерживается на нем силой трения. Если поле статора вращается со скоростью и момент на валу диска равен нулю (рис. 3 а)), то магнит ротора также будет вращаться со скоростью , передавая вращение диску за счет момента трения. Угол между осями магнитов при этом будет равен нулю. Возникновение нагрузочного момента на валу диска приведет к расхождению осей полюсов магнитов и появлению электромагнитного момента, компенсирующего нагрузочный момент (рис. 3 б)). Диск и магнит ротора будут вращаться синхронно, удерживаемые в зацеплении моментом сухого трения . Если нагрузочный момент увеличится и станет больше момента трения (рис. 3. в)), то магнит ротора будет проскальзывать по поверхности диска, вращаясь при этом с синхронной скоростью вслед за полем статора. Магнит ротора не выйдет из синхронизации, т.к. при этом . Момент сухого трения, действующий на магнит ротора, не зависит от скорости вращения, поэтому угол нагрузки будет оставаться постоянным и равным некоторому значению , определяемому параметрами момента трения (коэффициентом трения, силой прижатия магнита к диску и т.п.). Таким образом, магниты (поля) статора и ротора будут работать в синхронном режиме, а вал двигателя – в асинхронном.

Максимально возможный момент , передаваемый гистерезисным двигателем нагрузке, определяется свойствами материала активного слоя ротора. Эти свойства, в частности, отражаются формой петли гистерезиса. У материала с прямоугольной петлей гистерезиса угол магнитного запаздывания . Материал с нулевой площадью петли имеет . Чем больше значение , тем больше величина гистерезисного момента при прочих равных условиях. Современные материалы активного слоя имеют .

Постоянный электромагнитный момент гистерезисного двигателя в асинхронном режиме, т.е. от нулевой до синхронной скорости вращения, является их главным преимуществом по отношению к другим типам машин. Это единственная синхронная машина, обладающая свойством самозапуска.

Описанные выше свойства двигателя находят отражение в механической и угловой характеристиках представленных на рис. 4. Механическая характеристика в двигательном режиме, помимо участка синхронной работы 1-3, имеет также асинхронный участок 3-5. На участке 3-5 происходит перемагничивание активного слоя ротора и электромагнитный момент равен гистерезисному моменту. На участке 1-3 машина работает как синхронный двигатель с постоянными магнитами и угловой характеристикой . Точка 3 характеристик соответствует выходу из синхронизма, после чего начинает изменяться и неограниченно возрастать.

Принципиально гистерезисный двигатель может работать как в синхронном, так и в асинхронном режиме, однако работа в асинхронном режиме неэкономична, т.к. потери на перемагничивание возрастают с частотой скольжения.

Помимо самозапуска, к достоинствам гистерезисного двигателя можно отнести: простоту и надежность конструкции; бесшумность; большой пусковой момент ; плавность входа в синхронизм; относительно высокий КПД; малую кратность пускового тока ().

Недостатками являются; низкий коэффициент мощности (0,4-0,5) и высокая стоимость.