Для электрической цепи переменного тока справедливы все соотношения и параметры установленные ранее, исходя из энергетических преобразований. Поэтому для получения основных зависимостей на переменном токе достаточно в эти выражения ввести соответствующие величины.

Пусть напряжение в цепи с сопротивлением  изменяется по закону . Тогда в соответствии с таблицей 1 ток в ней будет

                    (1)

Отсюда следует, что начальные фазы тока и напряжения на этом участке одинаковы , а амплитуда тока равна . Временные диаграммы, соответствующие этим отношениям приведены на рис. 1 а). Там же показано изображение сопротивления на электрических схемах с условно положительными направлениями тока и напряжения.

Амплитудные и действующие значения синусоидальных величин связаны между собой постоянным коэффициентом, поэтому, разделив на  выражение для амплитуды тока получим соотношение действующих значений тока и напряжения на сопротивлении  или .

Синусоидальные функции выражения (1) можно представить их изображениями в виде векторов и соответствующих им комплексных чисел

   (2)

и изобразить их на векторной диаграмме (рис. 1 б).

 

В электрических цепях с синусоидальными переменными токами и напряжениями помимо статических явлений, свойственных цепям постоянного тока, появляются динамические эффекты, т.е. эффекты связанные с изменением этих величин во времени.

Так на любом участке электрической цепи, по которому протекает переменный ток  будет действовать ЭДС самоиндукции , наводимая изменяющимся во времени магнитным потоком, и равное ей, но направленное в противоположную сторону падение напряжения

         (3)

Величина , имеет размерность сопротивления и называется индуктивным сопротивлением. Амплитуда напряжения, возникающего за счет ЭДС самоиндукции, равна , а начальная фаза  больше начальной фазы протекающего тока на , т.е. напряжение опережает по фазе ток на . Временные диаграммы, соответствующие выражению (3), приведены на рис. 2 а.

Из выражения для амплитуды падения напряжения на индуктивности можно определить его действующее значение  или действующее значение тока , где величина  называется индуктивной проводимостью.

Индуктивное сопротивление по сути своей является распределенным параметром, т.к. магнитный поток существует везде, где протекает электрический ток, и на всех участках электрической цепи будет наводиться ЭДС самоиндукции, пропорциональная соответствующему индуктивному сопротивлению. Однако на практике индуктивность всей цепи или отдельного участка считают сосредоточенной в отдельном элементе, изображаемом на схемах в виде рис. 2 а.

Пользуясь таблицей 2, выражение (3) можно представить векторами в комплексной форме в виде:

      (4)

где  - комплексное индуктивное сопротивление.

Векторная диаграмма и схема замещения для выражения (2) приведены на рис. 2 б.

Из выражения (4) можно определить комплексное значение тока через падение напряжения

  

где  - комплексная индуктивная проводимость.

 

Пусть напряжение на емкости изменяется во времени по синусоидальному закону . Тогда из таблицы 1 ток в емкости определится в виде

                    (5)

Произведение  имеет размерность проводимости [1/Ом=См] и называется емкостной проводимостью. Отсюда амплитуда тока равна , а начальная фаза – . Таким образом, ток в емкости опережает падение напряжения на ней на . Временные диаграммы, соответствующие этим соотношениям тока и напряжения на емкости приведены на рис. 3 а.

Пользуясь связью между амплитудными и действующими значениями, для тока и падения напряжения на емкости можно записать  или , где величина  называется емкостным сопротивлением.

Из выражения (5) следует, что всякое изменение потенциалов в электрической цепи будет вызывать появление токов, приводящих к перераспределению зарядов. Причем, под токами в этом процессе следует понимать как токи проводимости, так и токи смещения, возникающие между всеми участках цепи. Поэтому емкостная проводимость, как и емкость, является распределенным параметром, но для расчетов ее, аналогично индуктивности, представляют сосредоточенной в отдельном элементе, который изображается на схеме в виде рис. 3 а.

Связь между напряжением и током в емкости можно представить также векторами (рис. 3 б) и соответствующими комплексными числами в виде

 

где  - комплексная емкостная проводимость.

Отсюда можно также определить комплексное падение напряжения на емкости

  

где  - комплексное емкостное сопротивление.

Индуктивность L и емкость C называются реактивными элементами электрической цепи. Реактивными называются также соответствующие сопротивления и проводимости. Это связано с тем, что падение напряжения на индуктивности и ток через емкость появляются только как следствие или реакция на изменение тока или разности потенциалов.

В резисторе падение напряжения не связано с изменением тока, поэтому его сопротивление, в отличие от реактивного, называется активным или резистивным сопротивлением.

Сведем полученные выше результаты в таблицу.

Элемент цепи

Оригиналы функций

Изображения функций

Напряжение

Ток

Комплексное сопротивление

Комплексная проводимость

Напряжение

Ток